Abstract
The development of cartilaginous elements of long bone during embryogenesis and postnatal bone repair processes is a complex process that involves skeletal cells and surrounding mesenchymal periosteal cells. Relatively little is known of the mechanisms underlying these processes. Previous studies from this and other laboratories have suggested that the extracellular matrix protein tenascin-C is involved in skeletogenesis. Using in situ hybridization and immunofluorescence, we extended those studies by comparing the expression of tenascin-C with that of syndecan-3, which belongs to a family of cell surface receptors with which tenascins are known to interact. We found that syndecan-3 transcripts at first were very abundant in the presumptive periosteum surrounding the diaphysis of early chondrocytic skeletal elements in chick limb. As the elements developed further, syndecan-3 gene expression decreased in the diaphyseal periosteum, whereas it became stronger around the early epiphysis and within the forming articular cells. However, as the diaphyseal periosteum initiated osteogenesis and gave rise to the intramembranous bone collar, syndecan-3 gene expression increased again. At early stages of skeletogenesis: the tenascin-C gene exhibited patterns of expression that were similar to and temporally followed, those of the syndecan-3 gene. At later stages, however, tenascin-C gene expression was markedly reduced during intramembranous osteogenesis around the diaphysis. In addition, although syndecan-3 gene expression was low in osteoblasts and osteocytes located deep into trabecular bone, tenascin-C gene expression remained strong. Thus, tenascin-C and syndecan-3 display distinct temporal and spatial patterns of expression in periosteum and during the development of long bone. Given their multidomain structure and specific patterns of expression, these macromolecules may regulate site-specific skeletal processes, including interactions between developing periosteum and chondrocytes and delineation of the early cartilaginous skeletal elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.