Abstract

Superoxide, an agent which attenuates the half-life of nitric oxide, is metabolized and synthesized by superoxide dismutase (SOD) and xanthine oxidase, respectively. Over the last few years much work has focused on the role of nitric oxide in human parturition. The aim of this study was to determine whether the onset of human parturition is associated with a change in the expression of copper/zinc superoxide dismutase (Cu/Zn SOD), manganese superoxide dismutase (Mn SOD) or xanthine oxidase within the uterus. Samples of myometrium, placenta, decidua and fetal membranes were obtained from women before and after the onset of labour at term. Immunocytochemistry was used to localize Cu/Zn SOD, Mn SOD and xanthine oxidase and measure SOD enzyme activity. Cu/Zn and Mn SOD-like immunoreactivity was detected in syncytiotrophoblast cells, villous stromal cells and endothelial cells of blood vessels in the placenta. In the myometrium Cu/Zn and Mn SOD were localized to myocytes and endothelial cells and to some vascular smooth muscle cells. In the fetal membranes we observed staining for Cu/Zn SOD and Mn SOD in the amnion, chorion, extravillous trophoblast and decidua. There was no difference in SOD enzyme activity or staining intensity for SOD between different cell types before and during labour. Xanthine oxidase immunoreactivity was identified in each of the tissues examined and again there was no difference in immunostaining in tissues obtained from women delivered before or after the onset of labour. These results show that the pregnant uterus is capable of both synthesizing and degrading superoxide and suggest that superoxide dismutase and xanthine oxidase may play a role in the maintenance of uterine quiescence during pregnancy, but not in the initiation of parturition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call