Abstract

Ocular immune privilege is a multifactorial phenomenon evolutionally selected to prevent immunogenic inflammation from disrupting the visual axis and causing blindness. Here, we investigated the role of signal transducers and activators of transcription (Stat3) and indoleamine 2,3-dioxygenase (IDO) in ocular immune privilege in corneal stromal cells. Human keratocytes were isolated and cultured in vitro, and Stat3 and IDO expression on keratocytes was investigated by reverse transcription polymerase chain reaction (RT-PCR). The active form of Stat3 was detected by flow-cytometry, and IDO enzyme activity following IFN-γ stimulation of keratocytes was measured by tryptophan to kynurenine conversion with photometric determination of kynurenine concentration in the supernatant. Stat3 was constitutively expressed in cultured keratocytes and up-regulated following IFN-γ stimulation. The active form of Stat3 was also up-regulated following IFN-γ stimulation. IDO expression and enzyme activity was markedly induced following IFN-γ stimulation, but this induction was prevented by the IDO specific inhibitor, 1-methyl tryptophan (1-MT). On the basis of this study, Stat3 and IDO may act as a factor of ocular immune privilege in corneal keratocytes. Thus, focus on these inhibitory molecules should be considered in studies aimed at developing therapeutic agents for controlling ocular inflammatory or immune diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call