Abstract

Environmental changes can stress and alter biology at the molecular and cellular level. For example, metal-protein interaction is a classic physic and biological property of nature, which is fundamentally influenced by acidity. Here, we report a unique cellular reprogramming phenomenon in that a brief strong acid treatment induced the expression of pluripotent stem cell (PSC) markers. We used strong acid to briefly challenge mix-cultured gastric cells, and then subcultured survived cells in anormal cell culture medium. We found that survival acid-treated cells expressed PSC markers detected by commonly used pluripotent antibodies such as SSEA-4 and Oct4. In addition, we observed that the survived cells from theacid challenge grew faster during the second and third weeks of subculture and hada relative short doubling time (DT) than the controls. PSC marker-labeled 'older' cells also presented immature cell-like morphology with some having marker Oct4 in the nucleus. Finally, the expression of the markers appeared to be sensitive to metal ion chelation. Removal of the metals during a brief acid treatment reduced pluripotent marker-positive cells, suggesting the dissociation of metals from metal-binding proteins may be a factor involved in the induction of stem cell markers. Our findings reveal that somatic cells appear to possess a plasticity feature to express pluripotent marker proteins or to select cell subpopulations that express pluripotent marker proteins when cells are transiently exposed to strong acid. It opens new directions for understanding conserved regulatory mechanisms involved in cellular survival under stressful stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.