Abstract
A variant of a low density lipoprotein receptor-negative Chinese hamster ovary (CHO) cell mutant was isolated using a nutritional selection called MeLoCo. The variant, designated met-18b-2, internalized and metabolized mevalonate at rates 10-40 times greater than the progenitor cells from which they were derived. The extent of incorporation of radioactivity from [3H]mevalonate into steroidal and nonsteroidal mevalonate derivatives, including modified proteins, was much greater in met-18b-2 cells than in their progenitors. Much of the internalized [3H]mevalonate was converted to nonpolar lipids. Unlike wild type CHO cells or the receptor-negative progenitors, met-18b-2 cells were killed by high concentrations of mevalonate (greater than 6 mM) in the culture medium. Regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity and cholesterol esterification was dramatically more sensitive to mevalonate in met-18b-2 cells than in progenitor cells. In cell extracts, both the rates of conversion of [3H]mevalonate to cholesterol and mevalonate kinase activities were similar for met-18b-2 and progenitor cells. In contrast to progenitor cells, met-18b-2 cells internalized [3H]mevalonate with high capacity (Km approximately 0.3 mM) kinetics. The increased uptake of [3H]mevalonate was temperature dependent and highly specific. These results suggest that met-18b-2 cells express a mevalonate transport activity that is not normally expressed by CHO cells. This activity may be due to a specific mevalonate transporter that is differentially expressed in specialized tissues. Because intracellular mevalonate in met-18b-2 cells can be labeled to high specific activity, these cells should prove very useful in further characterizing the structures of mevalonate derivatives and their metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.