Abstract

Small glutamine-rich tetratricopeptide repeat (TPR)-containing protein alpha (SGTA) is a novel TPR-containing protein involved in various biological processes. However, the expression and roles of SGTA in the central nervous system remain unknown. We have produced an acute spinal cord injury (SCI) model in adult rats and found that SGTA protein levels first significantly increase, reach a peak at day 3 and then gradually return to normal level at day 14 after SCI. These changes are striking in neurons, astrocytes and microglia. Additionally, colocalization of SGTA/active caspase-3 has been detected in neurons and colocalization of SGTA/proliferating cell nuclear antigen has been detected in astrocytes and microglial. In vitro, SGTA depletion by short interfering RNA inhibits astrocyte proliferation and decreases cyclinA and cyclinD1 protein levels. SGTA knockdown also reduces neuronal apoptosis. We speculate that SGTA is involved in biochemical and physiological responses after SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.