Abstract

Mutations in the low density lipoprotein receptor gene (LDLR) frequently impair folding and intracellular traffic of the receptor protein, resulting in the development of a monogenic disorder, familial hypercholesterolemia (FH). Identification of novel LDLR mutations requires confirmation of their functional importance in distinguishing pathogenic mutations from neutral changes in the aminoacid sequence. To elaborate a system for evaluation of the effect of mutation on the folding and intracellular transport of the LDLR, as well as its ability to bind low density lipoprotein (LDL), we constructed a plasmid containing LDLR cDNA and the gene of enhanced green fluorescent protein (EGFP). Confocal microscopy has shown that, upon transient transfection of HEK293 cells with the plasmid, the recombinant fusion protein LDLR–EGFP is transported onto the cellular membrane and binds labeled LDL. This construct will be further modified by site-directed mutagenesis to reproduce the LDLR missense mutations most common in the population of northwest Russia so as to study the subcellular localization and function of the modified chimeric protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call