Abstract
Ras-GRF, a neuron-specific Ras exchange factor of the central nervous system, was transfected in the SK-N-BE neuroblastoma cell line and stable clones were obtained. When exposed to retinoic acid, these clones showed a remarkable enhancement of Ras-GRF expression with a concomitant high increase in the level of active (GTP-bound) Ras already after 24 h of treatment. In the presence of retinoic acid, the transfected cells stopped growing and acquired a differentiated neuronal-like phenotype more rapidly than the parental ones. Cells expressing Ras-GRF also exhibited a more hyperpolarized membrane potential. Moreover, treatment with retinoic acid led to the appearance of an inward rectifying potassium channel with electrophysiological properties similar to IRK1. This current was present in a large number of cells expressing Ras-GRF, while only a small percentage of parental cells exhibited this current. However, Northern analysis with a murine cDNA probe indicated that IRK1 mRNA was induced by retinoic acid at a similar level in both kinds of cells. Brief treatment with a specific inhibitor of the mitogen-activated protein kinase (MAPK) pathway reduced the number of transfected cells showing IRK1 activity. These findings suggest that activation of the Ras pathway accelerates neuronal differentiation of this cell line. In addition, our results suggest that Ras-GRF and/or Ras-pathway may have a modulatory effect on IRK1 channel activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.