Abstract

The islets of Langerhans contain four distinct endocrine cell types producing the hormones glucagon, insulin, somatostatin and pancreatic polypeptide. These cell lineages are thought to arise from a common, multipotential progenitor cell whose identity has not been well established. The pancreatic and intestinal hormone, peptide YY, has been previously identified in glucagon-producing cells in islets; however, transgenic mice expressing Simian Virus 40 large T antigen under the control of the peptide YY gene expressed the oncoprotein in beta, delta and pancreatic polypeptide cells, and occasionally developed insulinomas, suggesting relationships between peptide YY-producing cells and several islet cell lineages. The four established pancreatic islet cell types were examined for coexpression of peptide YY in islets of normal and transgenic mice throughout development. Peptide YY immunoreactivity was identified in the earliest endocrine cells in the fetal pancreas and was coexpressed in each islet cell type during development. Peptide YY showed a high degree of co-localization with glucagon- and insulin-producing cells in early pancreatic development, but by adulthood, peptide YY was expressed in less than half of the alpha cells and was no longer expressed in beta cells. Peptide YY was also coexpressed with somatostatin and pancreatic polypeptide when these cell types first appeared, but most delta and pancreatic polypeptide cells continued to express peptide YY throughout development. The use of conditions that distinguish peptide YY from the related peptides, pancreatic polypeptide and neuropeptide Y, as well as the ability of the peptide YY gene to direct expression of a reporter gene in islets of transgenic mice, establishes expression of peptide YY in the earliest pancreatic endocrine cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.