Abstract

Dehydration responsive element binding (DREB) are important regulatory molecules which have a crucial role in abiotic stress tolerance. The productivity of tomato, as a drought-sensitive crop, is highly restricted by drought stress. The current study aimed at introducing the OsDERB2A gene into two tomato genotypes via Agrobacterium-mediated transformation system. Cotyledonary explants were pre-cultured for two days with Agrobacterium strain LBA4404 harboring pCAMBIA1301 with OsDREB2A driven by the constitutive promoter CaMV35S for transformation. Shoots were directly regenerated on MS medium containing 1 mg l-1 zeatin and 1 mg l-1 BAP, and in presence of 30 mg l-1 hygromycin as selective agent. Only eight weeks were needed to regenerate transgenic tomato using this protocol. An OD600 of 0.4 resulted in 64.3-76.9% transformation efficiency. Stable integration and expression of the OsDREB2A gene were confirmed in transgenic tomato using PCR and RT-PCR analyses, and drought tolerance of T0 transgenic lines was confirmed by leaf disc assay in 300 mM mannitol. The superior biomass, photosynthetic pigments, free soluble sugars and proline accumulation of OsDREB2A transgenic lines over wild type in response to mannitol-stress revealed their enhanced drought tolerance and indicated that the constitutive expression of OsDREB2A might modulate the expression of other drought responsive genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.