Abstract

The subset of striatal neurons which colocalize SS/NPY/NADPH-d are selectively resistant to neurodegeneration in Huntington's Disease (HD) and to excitotoxic cell death induced experimentally with NMDA receptor (NMDAR) agonists. Here we have analyzed the expression of immunoreactive NMDAR-1 (NR1) subunit (as an index of NMDAR protein) and of huntingtin (the normal product of the HD gene) in primary cultures of rat striatum to see if differential expression of the two antigens in the subset of SS/NPY/NADPH-d and other striatal neurons can explain their selective resistance or vulnerability. Double-label histochemical and immunocytochemical studies were carried out using conventional and confocal laser scanning microscopy to characterize the cellular and subcellular expression of NR1 and SS, or NPY or bNOS, together with NADPH-d histochemistry. The percentages of cultured striatal neurons that were positive for NADPH-d, SS, NPY, bNOS, and NRI were, respectively, 3.8, 8.4, 10.2, 5.1, and 80%. The majority of striatal NADPH-d neurons coexpressed SS and NPY; 17% of SS-producing neurons were strongly positive for NR1; the remaining cells (≈80%) exhibited only weak NR1 expression. Comparable data were obtained for NPY-positive neurons, 15% of which colocalized NR1 strongly and 70–80% weakly. By double-label immunofluorescence, huntingtin was nonselectively expressed in virtually all striatal neurons including SS/NPY/NADPH-d neurons. These results show that the majority of striatal SS/NPY/NADPH-d neurons express NR1. The relative abundance of NR1 in SS/NPY/NADPH-d neurons, however, varies between a small subset of neurons that are receptor rich and the remainder that express low levels only and may determine susceptibility to NMDAR-mediated neurotoxicity. Huntingtin is nonselectively expressed in virtually all striatal neurons and does not appear to be a determinant of the selective resistance of normal striatal SS/NPY/NADPH-d neurons to NMDA toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call