Abstract
Chronic pain is associated with N-methyl-D-aspartate (NMDA) receptor activation and downstream production of nitric oxide, which has a pivotal role in multisynaptic local circuit nociceptive processing in the spinal cord. The formation of nitric oxide is catalyzed by three major nitric oxide synthase (NOS) isoforms (neuronal, nNOS; inducible, iNOS; endothelial, eNOS), which are increased in the spinal cord of rodents subjected to some tonic and chronic forms of experimental pain. Despite the important role of NOS in spinal cord nociceptive transmission, there have been no studies exploring the effect of NMDA receptor blockade on NOS expression in the dorsal horn during chronic pain. Furthermore, NOS isoforms have not been fully characterized in the dorsal horn of animals subjected to arthritic pain. The aim of this work was therefore to study the expression of nNOS, iNOS and eNOS in the dorsal horns of monoarthritic rats, and the modifications in NOS expression induced by pharmacological blockade of spinal cord NMDA receptors. Monoarthritis was produced by intra-articular injection of complete Freund's adjuvant into the right tibio-tarsal joint. At week 4, monoarthritic rats were given either the competitive NMDA antagonist (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) or the uncompetitive NMDA antagonist ketamine. After 6 and 24 hours, animals were killed and posterior quadrants of the lumbar spinal cord were dissected. Sample tissues were homogenized and subjected to immunoblotting with anti-nNOS, anti-iNOS or anti-eNOS monoclonal antibodies. The nNOS isoform, but not the iNOS and eNOS isoforms, were detected in the dorsal horns of control rats. Monoarthritis increased the expression of nNOS, iNOS and eNOS in the dorsal horns ipsilateral and contralateral to the inflamed hindpaw. Intrathecal administration of CPP and ketamine reduced nNOS expression in monoarthritic rats but increased the expression of iNOS and eNOS. Results suggest that blockade of spinal cord NMDA receptors produces complex regulatory changes in the expression of NOS isoforms in monoarthritic rats that may be relevant for nitridergic neuronal/glial mechanisms involved in the pathophysiology of monoarthritis and in the pharmacological response to drugs interacting with NMDA receptors.
Highlights
Hyperalgesia, one of the main features of chronic pain, develops closely associated with increased glutamatergic neurotransmission in the dorsal horn of the spinal cord, especially to N-methyl-D-aspartate (NMDA) receptor activation
Results suggest that blockade of spinal cord NMDA receptors produces complex regulatory changes in the expression of nitric oxide synthase (NOS) isoforms in monoarthritic rats that may be relevant for nitridergic neuronal/ glial mechanisms involved in the pathophysiology of monoarthritis and in the pharmacological response to drugs interacting with NMDA receptors
The present results showed that the three major NOS isoforms were expressed bilaterally in the dorsal horns of monoarthritic rats, which is in agreement with previous observations that injection of incomplete Freund's adjuvant into the knee joint cavity increased the expression of the neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) isoforms in the lumbar
Summary
Hyperalgesia, one of the main features of chronic pain, develops closely associated with increased glutamatergic neurotransmission in the dorsal horn of the spinal cord, especially to N-methyl-D-aspartate (NMDA) receptor activation. Increased expression of one or more of the three NOS isoforms has been shown in the spinal cord of rodents after carrageenan injection into a hindpaw [13], intraplantar injection of CFA [12] and formalin [14], and intradermal injection of capsaicin [15] In these models of tonic experimental pain, only fast and short-term hyperalgesia and allodynia are tested. The aim of this work was to study the expression of nNOS, iNOS and eNOS in the dorsal horns of monoarthritic rats, and to explore how the expression of NOS isoforms in this model of chronic pain is modified by pharmacological blockade of spinal cord NMDA receptors with competitive and uncompetitive antagonists
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.