Abstract

Persistent pulmonary hypertension (PPH) is a major cause of morbidity and mortality in newborns with congenital diaphragmatic hernia (CDH). PPH is characterized by increased vascular resistance and smooth muscle cell (SMC) proliferation, leading to obstructive changes in the pulmonary vasculature. Nitric oxide (NO), generated by endothelial NO synthase (eNOS), is an important regulator of vascular tone and plays a key role in pulmonary vasodilatation. NO synthase interacting protein (NOSIP), which is strongly expressed by pulmonary SMCs, has recently been identified to reduce the endogenous NO production by interacting with eNOS. We designed this study to investigate the pulmonary vascular expression of NOSIP in the nitrofen-induced CDH model. Time-mated Sprague Dawley rats received nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D21 and lung specimens divided into CDH and control (n = 6 for each group). Quantitative real-time polymerase chain reaction and Western blotting were performed to analyze pulmonary gene and protein expression of NOSIP. Immunofluorescence double staining for NOSIP was combined with a specific SMC marker to evaluate protein expression in the pulmonary vasculature. Relative messenger ribonucleic acid and protein expression of NOSIP was significantly decreased in nitrofen-exposed CDH lungs compared with controls. Confocal laser scanning microscopy revealed markedly diminished NOSIP immunofluorescence in nitrofen-exposed CDH lungs compared with controls, mainly in the muscular and endothelial components of the pulmonary vasculature. This study demonstrates for the first time decreased NOSIP expression in the pulmonary vasculature of the nitrofen-induced CDH. These findings suggest that NOSIP underexpression may interfere with NO production, contributing to abnormal vascular remodeling and PPH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.