Abstract

Netrin-1 is a bifunctional secreted protein that directs axon extension in various groups of developing axonal tracts. The transmembrane DCC (deleted in colorectal cancer) receptor is described as netrin-1 receptor and is involved in the attractive effects of netrin-1. In this study, we examined the spatio-temporal expression patterns of both netrin-1 and DCC in the rat olfactory system at different stages of development and during axonal regeneration following unilateral bulbectomy. High DCC expression was detected on the pioneer olfactory axons as they are extending toward the telencephalon. This expression was transient since from embryonic day 16 onwards, DCC was no longer detected along the olfactory nerve path. From embryonic day 14 until birth, DCC was also expressed within the mesenchyme surrounding the olfactory epithelium. During the same period, netrin-1 protein was detected along the trajectory of olfactory axons up to the olfactory bulb and its expression pattern in the nasal mesenchyme largely overlapped that of DCC. Moreover, netrin-1 continued to be present during the two first post-natal weeks, and a weak protein expression still persisted in the dorso-medial region of the olfactory epithelium in adult rats. While unilateral bulbectomy induced a transient up-regulation of netrin-1 in the lamina propria, particularly in the dorso-medial region of the neuroepithelium, no DCC expression was detected on the regenerating olfactory axons. In the developing olfactory bulb, the extension of mitral cell axons was associated with DCC presence while netrin-1 was absent along this axonal path. DCC was also highly expressed in the newly formed glomeruli after birth, and a weak DCC expression was still detected in the glomerular layer in adult rats. Taken together, these data support the notion that netrin-1, via DCC expressed on axons, may play a role in promoting outgrowth and/or guidance of pioneering olfactory axons toward the olfactory bulb primordium. Moreover, association of netrin-1 with mesenchymal DCC may provide a permissive environment to the growth of both pioneer and later-growing axons. The maintenance of netrin-1 expression in the nasal mesenchyme of adult rats as well as its regional up-regulation following unilateral bulbectomy infer that netrin-1, even in the absence of DCC, may be involved in the process of axonal growth of newly differentiated olfactory receptor neurons probably through the use of other receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call