Abstract

Sympathetic neurons in the superior cervical ganglion (SCG) of adult rats depend on target-derived nerve growth factor (NGF) for maintenance of tyrosine hydroxylase (TH) levels and the noradrenergic neurotransmitter system. Axotomy of a SCG results in NGF deprivation, causing a decline in TH activity; continuous local application of NGF can prevent this decline in TH activity. We now report that injection of a defective herpes simplex virus 1 vector that expresses NGF (pHSVngf) into a SCG can prevent the decline in TH activity that follows axotomy. SCG of adult rats were injected with either pHSVngf virus or pNFlac virus, which expresses Escherichia coli beta-galactosidase. Analysis of RNA from pHSVngf-infected SCG indicated that the NGF gene was efficiently transcribed and processed. Furthermore, 4 days after pHSVngf injection animals underwent axotomy of the virus-injected SCG. After another 10 days, animals were sacrificed and both the injected-axotomized and contralateral control ganglia were assayed for TH activity. Axotomy of SCG injected with pNFlac virus produced a 50% decline in TH activity relative to control ganglia (P = 0.02). In contrast, SCG injected with pHSVngf virus did not show a decline in TH activity following axotomy; instead, these ganglia manifested an 18% increase in TH levels relative to control ganglia. These data demonstrate that herpes simplex virus 1 vectors can be used to modify neuronal physiology in vivo; specifically, expression of a critical gene product by neural cells that do not normally produce it has potential applications for gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.