Abstract

The ubiquitous opportunistic human pathogen Pseudomonas aeruginosa has five terminal oxidases for aerobic respiration and uses them under different growth conditions. Two of them are cbb3-type cytochrome c oxidases encoded by the gene clusters ccoN1O1Q1P1 and ccoN2O2Q2P2, which are the main terminal oxidases under high- and low-oxygen conditions, respectively. P. aeruginosa also has two orphan gene clusters, ccoN3Q3 and ccoN4Q4, encoding the core catalytic CcoN isosubunits, but the roles of these genes have not been clarified. We found that 16 active cbb3 isoforms could be produced by combinations of four CcoN, two CcoO, and two CcoP isosubunits. The CcoN3- or CcoN4-containing isoforms were produced in the WT cell membrane in response to nitrite and cyanide, respectively. The strains carrying these isoforms were more resistant to nitrite or cyanide under low-oxygen conditions. These results indicate that P. aeruginosa gains resistance to respiratory inhibitors using multiple cbb3 isoforms with different features, which are produced through exchanges of multiple core catalytic isosubunits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call