Abstract

Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call