Abstract

The mu-, delta- and kappa-opioid receptors have been expressed in Sf9 and 'High Five' insect cells using the baculovirus expression system. In both cell lines highest receptor levels (pmol/mg membrane protein) were observed 48 h after infection. Concomitant exposure to the narcotic antagonist naloxone (1 microM) enhanced the production of each receptor type. However, "High Five' cells differed from Sf9 cells in a 2-3-fold higher receptor density in the cell membrane and were therefore employed for receptor characterization. In membranes of 'High Five' cells opioid receptor levels ranged from 1.0 +/- 0.2 pmol/mg protein for the kappa-opioid receptor, 1.7 +/- 0.2 pmol/mg for the delta-opioid receptor to 2.1 +/- 0.5 pmol/mg for the mu-opioid receptor. The mu-, delta- and kappa-opioid receptor agonists [D-Ala2,N-methyl-Phe4-Gly-ol5]enkephalin ([3H]DAMGO), [D-Pen2,D-Pen5]enkephalin ([3H]DPDPE) and (5 alpha, 7 alpha, 8 beta)-(+)-N-methyl-N-(7-(1-pyrrolidinyl-1-oxaspiro(4,5)dec-8-yl) benzeneacetamide ([3H]U69,563) bound to the opioid receptors with Kd values of 3.4 +/- 0.3 nM, 4.5 +/- 0.1 nM and 1.2 +/- 0.3 nM, respectively, resembling those reported for opioid receptors expressed in mammalian cells. Testing the functionality of the receptors in 'High Five' cells, we found that high affinity agonist binding was strongly reduced in the presence of GTP gamma S/sodium, indicating their coupling to G proteins. Furthermore, activation of the three receptor types inhibited forskolin-stimulated cAMP formation. The results presented here suggest that the 'High Five' cell/baculovirus system provides a convenient method for high level expression of functionally intact opioid receptors as judged by receptor binding studies, their G-protein coupling and inhibition of adenylyl cyclase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.