Abstract

Although the function and effects of many growth factors and extracellular matrix (ECM) molecules have been described for several periodontal tissues in vivo and in vitro, the molecular interactions involved in the communication between cells of the periodontal ligament and the alveolar bone are poorly understood. To contribute to the identification of such interactions, we have generated co-cultures (CCs) of periodontal ligament fibroblasts (PDLs) and alveolar bone cells (ABCs) and compared mRNA expression for various growth factors, ECM molecules, and matrix metalloproteinase13 (MMP13) after 1 and 2 weeks with matched mono-cultures (MCs) by reverse transcription/polymerase chain reaction. Compared with CCs of 1 week, PDLs and ABCs after 2 weeks revealed relatively high levels of all analyzed mRNAs, viz., for EGF, HGF, VEGF, TGFbeta1, collagen-I (COL1), osteonectin (ON), fibronectin (FN1), and MMP13. At week 2, when compared with MCs, CCs showed an elevation of all tested mRNAs in PDLs and ABCs, except for TGFbeta1 and FN1, which only increased in PDLs. After 1 week, when CCs were compared with MCs, mRNAs for HGF and TGFbeta1 were less abundant in PDLs and ABCs, whereas the other genes exhibited lower expression levels in only one of the cell types. Analysis of our data indicated that the expression of mRNAs for growth factors and for COL1, ON, FN1, and MMP13 was modulated in the distinct cell types with respect to culture time and culture type. The differences in the mRNA expression patterns between CCs and MCs suggest that the respective genes are involved in the molecular interactions of PDLs and ABCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call