Abstract

Wnt signaling plays an important role in cell growth, differentiation, polarity formation, and neural development. We have recently identified the Coiled-coil-DIX1 ( Ccd1) gene encoding a third type of a DIX domain-containing protein. Ccd1 forms homomeric and heteromeric complexes with Dishevelled and Axin, and positively regulates the Wnt/β-catenin pathway. Here, we examined the spatiotemporal expression pattern of Ccd1 mRNA in mouse embryos from embryonic day 6.5 (E6.5) to E17.5 by in situ hybridization. Ccd1 expression was detected in the node region in gastrula embryos, in the cephalic mesenchyme and tail bud at E8.5, and in the branchial arch and forelimb bud at E9.5. In the central nervous system, Ccd1 expression began and persisted in the regions where the neurons differentiated, so that it was observed throughout the brain and spinal cord at E17.5. Ccd1 expression was also strong in the peripheral nervous system, including sensory cranial ganglia (trigeminal, facial, and vestibulocochlear ganglia), dorsal root ganglia, and autonomic ganglia (sympathetic ganglia, celiac ganglion, and hypogastric plexus). Ccd1 was detected in the sensory organs, such as the inner nuclear layer of the neural retina, saccule and cochlea of the inner ear, and nasal epithelium. Outside the nervous system, Ccd1 mRNA was observed in the cartilage, tongue, lung bud, stomach, and gonad at E12.5-E14.5, and in the tooth bud, bronchial epithelium, and kidney at E17.5. Taken together, these findings demonstrate that Ccd1 expression is observed in all the neurons in the nervous system, closely associated with neural crest-derived tissues, and largely overlapping with the regions where several Wnt genes are reported to play a role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call