Abstract

Refractive surgery not only leads to tissue injury but also evokes mechanical stress increase of the cornea. How the mechanical stress affects the corneal matrix remodeling, specifically, matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of metalloproteinases; TIMPs) is not well understood. In this study, cultured rabbit corneal fibroblasts invitro were subjected to regimen of 5%, 10%, or 15% equibiaxial stretch at 0.1 Hz for 3 or 24 h. MMP-2 protein level was measured by gelatin zymography and Western blotting. MMP-2, membrane type 1 MMP (MT1-MMP), and TIMP-2 mRNA levels were quantified by real-time quantitative PCR. Extracellular regulated protein kinase (ERK) phosphorylation protein levels were assessed by Western blotting. Our results showed that a 15% stretch resulted in increases in MMP-2 protein, MMP-2 mRNA, and MT1-MMP mRNA levels, but a decrease in TIMP-2 mRNA level. However, a 5% stretch caused decreases in MMP-2 protein and mRNA level, but an increase in TIMP-2 mRNA level, and no change in MT1-MMP mRNA level. A 15% stretch also caused a significant increase in ERK1/2 phosphorylation. Inhibition of the mitogenactivated protein kinase (MEK) pathway with PD98059 attenuated stretch-induced increase in MMP-2 production and ERK activity. These results suggest that small-magnitude stretching may promote corneal matrix synthetic events, whereas large-magnitude stretching promotes corneal matrix degradation by changing the balance between MMPs and TIMPs in corneal fibroblasts. Large-magnitude stretch-induced increase in pro-MMP-2 production was in an ERK-dependent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call