Abstract

Radiation-impaired wound is characterized by delayed healing, nonhealing, and carcinogenesis. The mechanism remains unclear. Matrix metalloproteinases (MMPs) are one family of key regulators of the process of wound healing. Their abnormal expression plays important roles in the formation of some chronic skin ulcers. The objective of this project was to study the expression of MMP1 in surgical and radiation-impaired wound healing and its effects on the healing process and tissue remodeling. A rat model of radiation-impaired wound healing was used. Routine light microscopy, electron microscopy, immunohistochemistry, and in situ hybridization, all of which enabled the detection of MMP1 expression during the healing process, were performed. The wound healing process was impaired and delayed. In rats receiving 25Gy gamma-ray locally, the irradiated wounds healed 6 days later than the nonirradiated controls. The following changes in MMP1 expression were found: (1) In the early inflammatory phase and in the period of granulation tissue formation, MMP1 expression was only slightly if at all affected in the newly formed epidermis of irradiated wounds compared with controls. Later, the epidermal expression of MMP1 in radiation wounds was comparatively increased following the delay of the healing process. (2) MMP1 expression in irradiated wounds was markedly decreased in fibroblasts, endothelial cells, and macrophages compared with controls. The expression phase was prolonged because of the delay of the healing process. The reduced expression of MMP1 in granulation tissue retards such important processes as cell migration, angiogenesis, and tissue remodeling, thus slowing the healing process. The expression ofMMP1 in the proliferating keratinocytes may help re-epithelialization. However, in the late healing period, overexpression of MMP1 in the epidermis may hinder the establishment of basal membrane and the formation of granulation tissue, and affect the tissue remodeling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.