Abstract

We report the expression of melanocyte-related genes (MRG) in freshly resected, histopathologically confirmed, human breast cancer specimens and describe experiments illuminating similar observations on a variety of breast cancer cell lines including MDA-MB-435. This finding has implications for research on breast cancer, for clinical investigation of cancer patients presenting with metastases from occult primary tumors and for understanding aberrant differentiation in cancer cells. For example, higher expression of six MRG correlated inversely with propensity for metastatic spread in clones isolated from the human breast cancer cell line MDA-MB-435. Comparisons of MRG expression in cells growing in vitro with those seen in tumors generated by the same lines in vivo showed that the levels of activity of these genes are influenced by the surrounding environment. Also, silencing of expression of the melanocyte-related transcription factor MITF, by transduction of the non-metastatic clone NM2C5 with a construct expressing a specific anti-MITF shRNA, resulted in decreased production of 5 of the melanocyte-related proteins including TYRP1, Pmel 17, MART 1(Melan-A) and TYRP2, but no increase in metastatic capability. Hence MRG expression reproducibly ear-marked, but did not cause, metastatic incompetence. We also report cytogenetic and other data that conflict with the recent suggestion that MDA-MB-435 is of melanocytic origin and are more consistent with its original designation as being of mammary lineage. We conclude that detection of MRG expression profiles in freshly excised breast cancers and in cultured breast cancer cells reflects the operationally important clinical phenomenon of inappropriate gene expression in malignant neoplasms. Concomitantly, we suggest that the evidence we have obtained (i) collectively supports the continued widespread use of the MDA-MB-435 cell line in breast cancer and metastasis research and (ii) advances knowledge of the diversity of aberrant differentiation programs in malignant cells, which is valuable for making accurate diagnoses and treatment decisions in clinical oncology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call