Abstract

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder that causes muscle wasting, myotonia, cardiac conduction abnormalities, and other multi-systemic symptoms. Current evidence supports a pathogenic mechanism involving aberrantly expanded CTG repeats in the 3′-untranslated region of the DM protein kinase ( DMPK) gene. The repeats are thought to recruit various RNA-binding proteins such as muscleblind-like (MBNL) proteins into foci in the nuclei of DM cells, resulting in loss of function. However, aberrant regulation of transcription or subsequent RNA processing of MBNL-family mRNAs might also be part of the pathogenic mechanism of DM. We used real-time RT-PCR analysis to examine the possibility that MBNL mRNA expression is altered in DM1 patients. We also examined mRNA expression for members of the CUG-BP and ETR-3-like factor (CELF) family of RNA-binding proteins given that CELF proteins regulate alternative splicing and are also implicated in DM. We found that DM1 muscles displayed aberrant regulation of alternative splicing as reported previously; however, the levels of MBNL and CELF mRNA expression did not show any significant changes. Our results suggest that the expression and stability of the mRNA for these RNA-binding proteins are unaffected in DM1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call