Abstract

A large body of experimental evidence supports the participation of two groups of extracellular proteases, matrix metalloproteinases (MMPs), and plasminogen activators/plasmin, in tissue remodeling in physiological and pathological invasion. In the late mouse placenta, several tissue remodeling and cell invasion processes take place. Spongiotrophoblast migration into maternal decidua, as well as decidual extracellular matrix remodeling require the coordinated action of extracellular proteolytic enzymes. Via Northern and in situ hybridization, we have analyzed the spatio-temporal expression patterns of members of the MMP family (stromelysin-3, gelatinases A and B), as well as their inhibitors TIMP-1, -2 and -3 in late murine placenta (days 10.5 to 18.5 of gestation). Gelatinase activity in placental extracts was assessed by substrate zymography. Gelatinase A and stromelysin-3 were found to be prominently expressed in decidual tissue; shortly after midpregnancy, the decidual expression patterns of gelatinase A and stromelysin-3 became overlapping with each other, as well as with the expression domain of TIMP-2. On the other hand, gelatinase B transcripts were expressed only by trophoblast giant cells at day 10.5, and were downregulated at later stages. TIMP-1 and TIMP-3 transcripts were detected in decidual periphery at day 10.5, while later the expression was restricted to the endometrial stroma and spongiotrophoblasts, respectively. The areas of stromelysin-3 expression were the same (giant trophoblasts) or adjacent (decidua) to those where urokinase (uPA) transcripts were detected, suggesting a possible cooperation between these proteinases in placental remodeling. We generated mice doubly deficient for stromelysin-3 and uPA, and report here that these mice are viable and fertile. Furthermore, these animals do not manifest obvious placental abnormalities, thereby suggesting the existence of compensatory/redundant mechanisms involving other proteolytic enzymes. Our findings document the participation of MMPs and their inhibitors in the process of late murine placenta maturation, and warrant the characterization of other members of the MMP family, like membrane type-MMPs, in this process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.