Abstract

According to the growth state of hair follicles, the hair cycle is divided into the anagen, catagen and telogen phases. A number of biological factors have been shown to synchronize with the hair cycle. As an important component of the hair follicle, the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitor of matrix metalloproteinases; TIMPs). It has been reported that MMP-2, MMP-9 and TIMP-1 are associated with the hair cycle; however, their expression levels during the hair cycle have not been fully elucidated. Reverse transcription-polymerase chain reaction and ELISA analysis in the present study demonstrated that, during the hair cycle in mice, mRNA and protein expression levels of MMP-2 and MMP-9 were elevated in the anagen phase, and decreased during the catagen and telogen phases. Furthermore, SDS-PAGE gelatin zymography demonstrated that their activities fluctuated in the hair cycle. Additionally, it was observed that the mRNA and protein expression levels of TIMP-1 and TIMP-2 were negatively correlated with MMP-9 and MMP-2, respectively. Immunohistochemical examination demonstrated that MMP-2 and TIMP-2 were present in all structures of the hair follicle. However, MMP-9 and TIMP-1 were locally expressed in certain areas of the hair follicle, such as in the sebaceous gland at the anagen, catagen and telogen phases, and in the inner root sheath at the catagen phase. These results suggested that MMP-2 and MMP-9 may serve an important role in the hair growth cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call