Abstract

BackgroundPrevious research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1) has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling.MethodsBreast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting.ResultsBreast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM) increased the GIRK1 mRNA levels and decreased beta2-adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K+ flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells.ConclusionsOur data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer.

Highlights

  • Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways

  • Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer

  • The estrogen-responsive (MCF-7, ZR-75-1, MDA-MB-361) and estrogen non-responsive (MDA-MB-453, MDA-MB435S, MDA-MB-468) human breast cancer cell lines were screened for the presence of the GIRK1 potassium channel by reverse transcription polymerase chain reaction (RT-PCR) analysis

Read more

Summary

Introduction

Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. The expression of β-adrenergic receptors has been correlated with the over-expression of the arachidonic acid-metabolizing enzymes cyclooxygenase-2 (COX-2) and lipoxygenases (LOX) in adenocarcinomas of lungs [17], colon [18], prostate [19], and pancreas [15] Inhibitors of these enzymes have been identified as cancer preventive agents in animal models of these cancers [13,20,21,22]. These findings suggest that among the superfamily of adenocarcinomas at various organ sites, there is a subset of malignancies that is regulated by β-adrenergic and arachidonic acid-mediated signal transduction pathways

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.