Abstract

There is increasing evidence that alterations in nitric oxide synthesis are of pathophysiological importance in heart failure. A number of studies have shown altered nitric oxide production by the endothelial constitutive isoform of nitric oxide synthase (NOS), but there is very little information on the role of the inducible isoform. We analyzed inducible NOS (iNOS) expression in ventricular myocardium taken from 11 control subjects (who had died suddenly from noncardiac causes), from 10 donor hearts before implantation, and from 51 patients with heart failure (24 with dilated cardiomyopathy [DCM], 17 with ischemic heart disease [IHD], and 10 with valvular heart disease [VHD]). Reverse transcription-polymerase chain reaction was used to confirm the presence of intact mRNA and to detect expression of iNOS and atrial natriuretic peptide (ANP). ANP was used as a molecular phenotypic marker of ventricular failure. iNOS was expressed in 36 of 51 biopsies (71%) from patients with heart failure and in none of the control patients (P<.0001). iNOS expression could also be detected in 50% of the donor hearts. All samples that expressed iNOS also expressed ANP. iNOS gene expression occurred in 67% of patients with DCM, 59% of patients with IHD, and 100% of patients with VHD. To determine whether iNOS protein was expressed in failing ventricles, immunohistochemistry was performed on three donor hearts and nine failing hearts with iNOS mRNA expression. Staining for iNOS was almost undetectable in the donor myocardium and in control sections, but all failing hearts showed diffuse cytoplasmic staining in cardiac myocytes. Expression of iNOS could be observed in all four chambers. Western blot analysis with the same primary antibody showed a specific positive band for iNOS protein in the heart failure specimens; minimal iNOS protein expression was seen in donor heart samples. iNOS expression occurs in failing human cardiac myocytes and may be involved in the pathophysiology of DCM, IHD, and VHD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.