Abstract

beta-adrenergic hyporesponsiveness in many cardiomyopathies is linked to expression of inducible nitric oxide synthase (iNOS) and increased production of NO. The purpose of this study was to examine whether iNOS expression alters the function of the sarcoplasmic reticulum (SR) Ca(2+) release channel (ryanodine receptor, RyR) during beta-adrenergic stimulation. Expression of iNOS was induced by lipopolysaccharide (LPS) injection (10 mg/kg) 6 hours before rat myocyte isolation. Confocal microscopy (fluo-3) was used to measure Ca(2+) spark frequency (CaSpF, reflecting resting RyR openings) and Ca(2+) transients. CaSpF was greatly increased by the adenylate cyclase activator forskolin (100 nmol/L) in normal myocytes (iNOS not expressed), but this effect was suppressed (by 77%) in LPS myocytes (iNOS expressed). When NO production by iNOS was inhibited by aminoguanidine (1 mmol/L), there was a further increase in the forskolin-induced CaSpF in LPS myocytes (to levels similar to the forskolin-stimulated CaSpF in normal myocytes). This effect was also seen in myocytes isolated from a failing human heart. There was no effect of aminoguanidine on forskolin-stimulated CaSpF in normal myocytes. ODQ (10 micromol/L), an inhibitor of NO stimulation of guanylate cyclase, did not restore the forskolin-induced rise in CaSpF in LPS myocytes. Aminoguanidine also increased twitch Ca(2+) transient amplitude in LPS myocytes after forskolin application (independent of changes in SR Ca(2+) load). iNOS/NO depresses beta-adrenergic-stimulated RyR function through a cGMP-independent pathway (eg, NO- and/or peroxynitrite-dependent redox modification). This mechanism limits beta-adrenergic responsiveness and may be an important signaling pathway in cardiomyopathies, including human heart failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.