Abstract
Insulin-like growth factors (IGF-I and -II) are present in the brain during development, with high levels of both being also found in the periphery particularly in the embryo. IGFs in the brain are believed to stimulate the proliferation of neuronal and glial precursors and their phenotypic differentiation. Using in situ hybridization, we have investigated the distribution of cells producing IGF-I and -II in the rat fetus during the second half of prenatal development with special emphasis on the peripheral and central nervous system. High levels of IGF-I mRNA were found in the olfactory bulb and in discrete neurons of the cranial sensory ganglia, notably in the trigeminal ganglion, as early as 13 days of gestation, in the pineal primordium of 18 day old fetuses, and in discrete groups of cells in the cochlear epithelium located laterally outside the forming spiral organ, in day 13 to 21 fetuses. High levels of IGF-II mRNA in the brain, besides the choroid plexus and the leptomeninges, were detected in hypothalamus, in the floor of the 3rd ventricle at all stages studied, in the pineal primordium at 18 days and in the pars intermedia of the pituitary or in the Rathke's pouch epithelium from which it is derived, with progressive fading towards the end of the gestation. In the peripheral nervous system the IGF-II mRNA was only found in association with the vascular endothelia of the ganglia. IGF-II mRNA in the nervous system was found in highly vascularized areas, meninges, blood vessels and choroid plexuses. It is thus associated with structures involved in the production of extracellular fluids and/or substrate transport and supply in the nervous tissues. A more specific role in the differentiation or fetal endocrine function should be considered for IGF-II in cells producing melatonin and melanocyte stimulating hormone (MSH) in the pineal and pituitary glands, respectively. The presence of IGF-I mRNA in the nervous system could be associated with fiber outgrowth and synaptogenesis in the cases of olfactory bulb and developing iris. The role of IGF-I in restricted populations of cells of the cochlear epithelium and in the pineal gland is unclear and requires further investigations including a search for IGF-I receptors in possible target cells. In the sensory ganglia, the presence of high levels of IGF-I mRNA eventually corresponds to the production, by post-translational processing, of the amino-terminal tripeptide of IGF-I, which might represent a neurotransmitter for these sensory neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.