Abstract

IntroductionHypoxia-inducible factor 1 (HIF-1) alpha and its downstream targets carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) are key factors in the survival of proliferating tumor cells in a hypoxic microenvironment. We studied the expression and prognostic relevance of HIF-1α and its downstream targets in phyllodes tumors and fibroadenomas of the breast.MethodsThe expression of HIF-1α, CAIX, VEGF and p53 was investigated by immunohistochemistry in a group of 37 primary phyllodes tumors and 30 fibroadenomas with known clinical follow-up. The tumor microvasculature was visualized by immunohistochemistry for CD31. Proliferation was assessed by Ki67 immunostaining and mitotic counts. Being biphasic tumors, immunoquantification was performed in the stroma and epithelium.ResultsOnly two fibroadenomas displayed low-level stromal HIF-1α reactivity in the absence of CAIX expression. Stromal HIF-1α expression was positively correlated with phyllodes tumor grade (P = 0.001), with proliferation as measured by Ki67 expression (P < 0.001) and number of mitoses (P < 0.001), with p53 accumulation (P = 0.003), and with global (P = 0.015) and hot-spot (P = 0.031) microvessel counts, but not with CAIX expression. Interestingly, concerted CAIX and HIF-1α expression was frequently found in morphologically normal epithelium of phyllodes tumors. The distance from the epithelium to the nearest microvessels was higher in phyllodes tumors as compared with in fibroadenomas. Microvessel counts as such did not differ between fibroadenomas and phyllodes tumors, however. High expression of VEGF was regularly found in both tumors, with only a positive relation between stromal VEGF and grade in phyllodes tumors (P = 0.016). Stromal HIF-1α overexpression in phyllodes tumors was predictive of disease-free survival (P = 0.032).ConclusionThese results indicate that HIF-1α expression is associated with diminished disease-free survival and may play an important role in stromal progression of breast phyllodes tumors. In view of the absence of stromal CAIX expression in phyllodes tumors, stromal upregulation of HIF-1α most probably arises from hypoxia-independent pathways, with p53 inactivation as one possible cause. In contrast, coexpression of HIF-1α and CAIX in the epithelium in phyllodes tumors points to epithelial hypoxia, most probably caused by relatively distant blood vessels. On the other hand, HIF-1α and CAIX seem to be of minor relevance in breast fibroadenomas.

Highlights

  • Hypoxia-inducible factor 1 (HIF-1) alpha and its downstream targets carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) are key factors in the survival of proliferating tumor cells in a hypoxic microenvironment

  • These results indicate that HIF-1α expression is associated with diminished disease-free survival and may play an important role in stromal progression of breast phyllodes tumors

  • In view of the absence of stromal CAIX expression in phyllodes tumors, stromal upregulation of HIF-1α most probably arises from hypoxia-independent pathways, with p53 inactivation as one possible cause

Read more

Summary

Introduction

Hypoxia-inducible factor 1 (HIF-1) alpha and its downstream targets carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) are key factors in the survival of proliferating tumor cells in a hypoxic microenvironment. We studied the expression and prognostic relevance of HIF-1α and its downstream targets in phyllodes tumors and fibroadenomas of the breast. Tumor cells must develop a vascular system and adapt their metabolism. Under normoxic conditions the HIF-1α protein is rapidly degraded. O2-dependent hydroxylation of proline residues in HIF-1α causes binding of the von Hippel–Lindau tumor suppressor protein, which leads to ubiquitilation and subsequent degradation by the CAIX = carbonic anhydrase IX; FGF = fibroblast growth factor; HIF-1 = hypoxia-inducible factor 1; PDGF = platelet-derived growth factor; VEGF = vascular endothelial growth factor

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.