Abstract

Afferent pathways innervating the urinary bladder consist of myelinated Aδ- and unmyelinated C-fibers, the neuronal cell bodies of which correspond to medium and small-sized cell populations of dorsal root ganglion (DRG) neurons, respectively. Since hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel currents have been identified in various peripheral sensory neurons, we examined the expression of isoforms of HCN channels in the L6-S1 spinal cord and bladder afferent neurons from L6-S1 DRG in rats. Among HCN-1, HCN-2 and HCN-4 channel subtypes, positive staining with HCN-2 antibodies was found in the superficial dorsal horn of the spinal cord and small- and medium-sized unidentified DRG neurons. In dye-labeled bladder afferent neurons, HCN-2-positive cells were found in approximately 60% of neurons, and HCN-2 was expressed in both small- and medium-sized neurons with a higher ratio (expression ratio: 61% and 50% of neurons, respectively) compared with unidentified DRG neurons, in which the HCN expression ratio was 47% and 21% of small- and medium-sized cells, respectively. These results suggest that HCN-2 is the predominant subtype of HCN channels, which can control neuronal excitability, in small-sized C-fiber and medium-sized Aδ fiber DRG neurons including bladder afferent neurons, and might modulate activity of bladder afferent pathways controlling the micturition reflex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call