Abstract

The human 72 kDa gelatinase/type IV collagenase is a metalloproteinase that is thought to play a role in metastasis and angiogenesis. The 72 kDa progelatinase can be isolated from conditioned media as a complex with the tissue inhibitor of metalloproteinase-2 (TIMP-2). To investigate 72 kDa gelatinase-TIMP-2 interactions and to compare the activity of the complex versus that of the free enzyme, we have expressed and purified human 72 kDa progelatinase and TIMP-2 as single proteins in a recombinant vaccinia virus mammalian cell expression system. The recombinant 72 kDa progelatinase was able to bind TIMP-2, and it digested gelatin and collagen type IV after activation by p-aminophenylmercuric acid (APMA). The specific activity of the recombinant free enzyme was 20-fold higher than the activity of an APMA-treated stoichiometric complex of recombinant 72 kDa progelatinase and TIMP-2. Also, TIMP-2 caused an 86% inhibition of activity when added to the activated enzyme at a 1:1 molar ratio. Activation of the free recombinant 72 kDa progelatinase yielded the 62 kDa species and two fragments of 46 and 35 kDa that cross-reacted with monoclonal antibodies to the 72 kDa proenzyme. TIMP-2 inhibited the conversion of the recombinant proenzyme to the 62 kDa species and the appearance of the 45 and 35 kDa bands. These results suggest that TIMP-2 is not only a potent inhibitor of the activated enzyme but also prevents the generation of low-molecular-mass species and full enzymic activity from the zymogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.