Abstract

To investigate the expression of oocyte-specific linker histone protein (hH1FOO) in human ovaries and its incorporation into sperm chromatin after intracytoplasmic sperm injection (ICSI). Laboratory study. University hospital. Human ovarian tissues were obtained from patients at oophorectomy. Human oocytes and embryos were obtained from infertile patients undergoing IVF and ICSI. A polyclonal rabbit antibody targeting the predicted hH1FOO protein was used for immunohistochemical analysis. Western blot analysis and the reverse transcriptase-nested polymerase chain reaction were done to detect hH1FOO in chromatin of germinal vesicle-stage oocytes through to two-cell embryos. The hH1FOO antibody reactivity of oocytes, ovarian tissues, and sperm chromatin after ICSI. hH1FOO protein was localized in all oocytes from primordial to Graafian follicles. In unfertilized oocytes after ICSI, the chromatin of injected sperm was condensed without hH1FOO incorporation in 45.5% of oocytes, condensed with hH1FOO incorporation in 9%, and decondensed with hH1FOO incorporation in 45.5%. None of the oocytes contained decondensed sperm chromatin without hHFOO incorporation. hH1FOO protein was expressed by human oocytes from primordial follicles to early embryogenesis. Sperm nuclei that were still condensed after ICSI could be separated into two categories by hH1FOO incorporation, which might provide valuable information regarding failed fertilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.