Abstract

Background: Spinal and Bulbar Muscular Atrophy (SBMA) is caused by the extension of the polyglutamine tract within the androgen receptor (AR) gene, and results in a multisystem presentation, including the degeneration of lower motor neurons. The androgen receptor (AR) is known to modulate the expression of endogenous retrovirus-K (ERVK), a pathogenic viral genomic symbiont. Since ERVK is associated with motor neuron disease, such as Amyotrophic Lateral Sclerosis (ALS), we sought to determine if patients with SBMA exhibit evidence of ERVK reactivation.Results: Data from a pilot study demonstrate that peripheral blood mononuclear cell (PBMC) samples from controls and patients with SBMA were examined ex vivo for the expression of ERVK viral transcripts and proteins. No differences in ERVK RNA expression was observed between the clinical groups. In contrast, enhancement of processed ERVK Gag and integrase proteins were observed in SBMA-derived PBMC as compared to healthy control specimens. Increased ERVK protein maturation co-occurred with elevation in the expression of the pro-inflammatory transcription factor IRF1 in SBMA.Conclusions: Our findings indicate that ERVK viral protein maturation in SBMA is an unrecognized biomarker and facet of the disease. We discuss how our current understanding of ERVK-driven pathology may tie into key aspects of multi-system dysfunction in SBMA, with a focus on inflammation, proteinopathy, as well as DNA damage and repair.

Highlights

  • Spinal and Bulbar Muscular Atrophy (SBMA) is caused by the extension of the polyglutamine tract within the androgen receptor (AR) gene, and results in a multisystem presentation, including the degeneration of lower motor neurons

  • Its pre-mutation expansion with Amyotrophic lateral sclerosis (ALS) [5, 6], Atrophin-1 in Dentatorubral pallidoluysian atrophy (DRPLA) and several genes implicated in distinct types of spinocerebellar ataxia [4]

  • Our work has previously demonstrated that aggregate-prone, mutated TDP-43 protein can facilitate the accumulation of endogenous viral proteins within cells [16]

Read more

Summary

Introduction

Spinal and Bulbar Muscular Atrophy (SBMA) is caused by the extension of the polyglutamine tract within the androgen receptor (AR) gene, and results in a multisystem presentation, including the degeneration of lower motor neurons. Spinal and bulbar muscular atrophy (SBMA, called Kennedy’s disease) is a rare motor neuron disease with X-linked recessive inheritance. This adult onset neuromuscular disorder clinically presents with progressive lower motor neuron dysfunction, skeletal muscle wasting, and accompanying multi-organ involvement [1, 2]. ERVK in SBMA and its pre-mutation expansion with Amyotrophic lateral sclerosis (ALS) [5, 6], Atrophin-1 in Dentatorubral pallidoluysian atrophy (DRPLA) and several genes implicated in distinct types of spinocerebellar ataxia [4]. PolyQ expansions in excess of 37 amino acids long are considered pathogenic [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call