Abstract

BackgroundOncolytic viruses are currently experiencing accelerated development in several laboratories worldwide, with some forty-seven clinical trials currently recruiting. Many oncolytic viruses combine targeted cytotoxicity to cancer cells with a proinflammatory cell lysis. Due to their additional potential to express immunomodulatory transgenes, they are also often known as oncolytic viral vaccines. However, several types of oncolytic viruses are human-specific and the lack of suitable immune-competent animal models complicates biologically relevant evaluation of their vaccine potential. This is a particular challenge for group B adenoviruses, which fail to infect even those immunocompetent animal model systems identified as semi-permissive for type 5 adenovirus. Here, we aim to develop a murine cell line capable of supporting replication of a group B oncolytic adenovirus, enadenotucirev (EnAd), for incorporation into a syngeneic immunocompetent animal model to explore the oncolytic vaccine potential of group B oncolytic viruses.MethodsTransgenic murine cell lines were infected with EnAd expressing GFP transgene under replication-independent or -dependent promoters. Virus mRNA expression, genome replication, and late protein expression were determined by qRT-PCR, qPCR, and immunoblotting, respectively. We also use Balb/c immune-competent mice to determine the tumourogenicity and infectivity of transgenic murine cell lines.ResultsOur results show that a broad range of human carcinoma cells will support EnAd replication, but not murine carcinoma cells. Murine cells can be readily modified to express surface human CD46, one of the receptors for group B adenoviruses, allowing receptor-mediated uptake of EnAd particles into the murine cells and expression of CMV promoter-driven transgenes. Although the early E1A mRNA was expressed in murine cells at levels similar to human cells, adenovirus E2B and Fibre mRNA expression levels were hampered and few virus genomes were produced. Unlike previous reports on group C adenoviruses, trans-complementation of group B adenoviruses by co-infection with mouse adenovirus 1 did not rescue replication. A panel of group B adenoviruses expressing individual mouse adenovirus 1 genes were also unable to rescue EnAd replication.ConclusionTogether, these results indicate that there may be major differences in the early stages of replication of group C and B adenoviruses in murine cells, and that the block to the life cycle of B adenoviruses in murine cells occurs in the early stage of virus replication, perhaps reflecting poor activity of Ad11p E1A in murine cells.

Highlights

  • Oncolytic viruses are currently experiencing accelerated development in several laboratories worldwide, with some forty-seven clinical trials currently recruiting

  • Our results suggest that the absence of CD46 expression is only the first blockade to human group B adenovirus replication in murine cells

  • This study shows that human CD46 expression enables murine cells to be transduced with EnAd and that transgene expression can be driven by a replication-independent promoter such as CMV

Read more

Summary

Introduction

Oncolytic viruses are currently experiencing accelerated development in several laboratories worldwide, with some forty-seven clinical trials currently recruiting. Many oncolytic viruses combine targeted cytotoxicity to cancer cells with a proinflammatory cell lysis Due to their additional potential to express immunomodulatory transgenes, they are often known as oncolytic viral vaccines. Several types of oncolytic viruses are human-specific and the lack of suitable immune-competent animal models complicates biologically relevant evaluation of their vaccine potential. This is a particular challenge for group B adenoviruses, which fail to infect even those immunocompetent animal model systems identified as semi-permissive for type 5 adenovirus. Oncolytic viruses are an emerging class of therapeutic agents with potent anti-cancer activity [1] They selfamplify within infected cancer cells, releasing progeny virus particles upon cell death that can infect neighbouring cancer cells. An ideal animal tumour model would be syngeneic, avoiding the use of xenografted human tissues and obviating the need for immunocompromised animal hosts

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.