Abstract

Infection with hepatitis C virus is a worldwide health problem. An inadequate Th2 cytokine response promotes the fibrosis-cirrhosis fate. Immune-modulating molecules favoring a Th2 profile, such as HLA-G molecules of the HLA class Ib family, may play a role in chronic hepatitis. HLA-G contributes to the escape of tumors, and their involvement in viral infections has been increasingly described. The aim of this work was to study the expression of HLA-G in the liver, its cellular source and its regulation in cases of chronic C hepatitis. HLA-G cells in blocks of liver derived from patients infected with HCV were labeled by immunohistochemistry and enumerated. Double immunofluorescence allowed the identification of the cellular source. HLA-G secretion by a human mast cell line was quantified by ELISA after various stimulations. After treatment with IFN-α, real-time PCR was performed to determine the kinetics of cytokine expression profiles, followed by heat map clustering analysis. The number of HLA-G+ cells was significantly associated with the area of fibrosis. For the first time, we identify the HLA-G+ cells as being mast cells. HLA-G secretion was significantly induced in human mast cells stimulated by IL-10 or interferons of class I. The transcriptome of the secretome of this cell line stimulated by IFN-α revealed that (i) the HLA-G gene is upregulated late, and that (ii) T lymphocytes and NK cells are recruited. These findings suggest an autocrine loop in the genesis of HCV liver fibrosis, based on mast cells expressing HLA-G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call