Abstract
The human endolymphatic sac (ES) is situated in a duplicature of the dura in the posterior cranial fossa and constitutes a part of the inner ear. The sac possesses immunological capacities and is responsible for a major part of the trans-epithelial ion transport occurring within the inner ear, via molecular mechanisms similar to that of the kidney collecting duct epithelia. Dysfunction of the trans-epithelial ion transport has been hypothesized as the reason for the endolymphatic hydrops occurring in Menieres diseases. Thus, candidate drug selection for medical treatment of Menieres disease has been based on a potential capability of improving trans-epithelial ion transport. However, recent human studies seems to rule out diuretic therapy and The Committee for Medicinal Products for Human Use redrew the recommendation for trimetazidine (Vastarel) treatment in the management of Meniere disease in 2012. This leaves betahistine (Betaserc) as the only drug for potential prevention of the incapacitating attacks of dizziness, tinnitus and hearing loss. However, the histamine receptors targeted by betahistine have never been demonstrated in the human ES. Accordingly, this study aims to investigate the expression of histamine receptors of the human ES epithelium and sub-epithelial stroma. Following sampling of human endolymphatic sac tissue during translabyrinthine surgery, the expression of histamine receptor genes was determined by cDNA microarray analysis. Results were subsequently verified by immuno-histochemistry. The combined results of microarrays and immuno-histochemistry showed expression of the histamine receptor HRH1 in the epithelial lining of the ES, whereas HRH3 was expressed exclusively in the sub-epithelial capillary network. Receptors HRH2 and -4 were not expressed. The present data provide the first direct evidence of a molecular rationale for betahistine treatment in Menieres disease. A potential betahistine effect in Menieres disease may primarily be through the H3-receptor antagonism, leading to inhibition of vestibular neuro-transmission and central vaso-dilation. The H1-receptor localization in the ES epithelium suggests an immuno-regulatory effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.