Abstract

Alveolar fluid clearance in the developing and mature lungs is believed to be mediated by some form of epithelial Na channels (ENaC). However, single-channel studies using isolated alveolar type II (ATII) cells have failed to demonstrate consistently the presence of highly selective Na+ channels that would be expected from ENaC expression. We postulated that in vitro culture conditions might be responsible for alterations in the biophysical properties of Na+ conductances observed in cultured ATII cells. When ATII cells were grown on glass plates submerged in media that lacked steroids, the predominant channel was a 21-pS nonselective cation channel (NSC) with a Na+-to-K+ selectivity of 1; however, when grown on permeable supports in the presence of steroids and air interface, the predominant channel was a low-conductance (6.6 +/- 3.4 pS, n = 94), highly Na+-selective channel (HSC) with a P(Na)/P(K) >80 that is inhibited by submicromolar concentrations of amiloride (K(0.5) = 37 nM) and is similar in biophysical properties to ENaC channels described in other epithelia. To establish the relationship of this HSC channel to the cloned ENaC, we employed antisense oligonucleotide methods to inhibit the individual subunit proteins of ENaC (alpha, beta, and gamma) and used patch-clamp techniques to determine the density of this channel in apical membrane patches of ATII cells. Overnight treatment of cells with antisense oligonucleotides to any of the three subunits of ENaC resulted in a significant decrease in the density of HSC channels in the apical membrane cell-attached patches. Taken together, these results show that when grown on permeable supports in the presence of steroids and air interface, the predominant channels expressed in ATII cells have single-channel characteristics resembling channels that are associated with the coexpression of the three cloned ENaC subunits alpha-, beta-, and gamma-ENaC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.