Abstract

To understand the molecular mechanisms of cellular signaling of atrial natriuretic peptide (ANP), we have studied its effect on the enzymatic activity of endogenous and overexpressed protein kinase C (PKC) in rat thoracic aortic vascular smooth muscle (RTASM) cells. Angiotensin II (ANG II), endothelin-1 (ET-1), and 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulated fourfold to fivefold PKC activity in PKC-alpha cDNA-transfected RTASM cells. However, pretreatment of these cells with ANP significantly inhibited the agonist-stimulated PKC activity in a dose-dependent manner. The inhibitory effect of ANP was more effective if cells were transfected with both PKC-alpha and guanylyl cyclase-A/atrial natriuretic peptide receptor (Npra) cDNAs. The agonist-stimulated PKC activity was also inhibited if RTASM cells were pretreated with cGMP analog 8-bromo-cGMP; however, the treatment of cells with a cAMP analog, dibutyryl-cAMP, did not show any discernible effect. The pretreatment of cells with Npra antagonist A-71915, significantly blocked the production of cGMP as well as the inhibitory effect of ANP on PKC activity. To further examine whether the antagonistic action of ANP and 8-bromo-cGMP on agonist-stimulated PKC activity were mediated through cGMP-dependent protein kinase (PKG), cells were treated with ANP or 8-bromo-cGMP and activators of PKC in the presence of KT-5823, a specific inhibitor of PKG. The treatment of cells with KT-5823 significantly attenuated the inhibitory effects of both ANP and 8-bromo-cGMP on agonist-stimulated PKC activity. The results from these studies provide strong evidence that ANP antagonizes the activation of PKC in RTASM cells, involving guanylyl cyclase-A receptor Npra and second messenger cGMP. Our data further support the notion that ANP acts as a negative mediator of signaling cross-talks between Npra and PKC in a cGMP-dependent manner, probably involving cGMP-dependent protein kinase in this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.