Abstract
Site-directed mutants of the group IA phospholipase A(2) from cobra venom were constructed and expressed in the methylotrophic yeast Pichia pastoris to probe for the proposed phosphatidylcholine (PC) activator site. Previous crystallographic and molecular modeling studies have identified two regions of the enzyme as likely candidates for this site. Residues Glu-55, Trp-61, Tyr-63, Phe-64, and Lys-65 were mutated to test the site advanced by Ortiz et al. [(1992) Biochemistry 31, 2887-2896] while Asp-23 and Arg-30 were mutated to assess the site proposed by Segelke et al. [(1998) J. Mol. Biol. 279, 223-232]. Expressed enzymes were purified by affinity chromatography and analyzed by SDS-PAGE, Western blotting, electrospray ionization mass spectroscopy, and circular dichroism. Both phospholipid headgroup specificity and rates of hydrolysis on monomeric PC substrates were determined and found to be similar for native, wild-type, and all of the mutant enzymes. These results suggest that all of the expressed enzymes were properly folded and contained functional catalytic sites. Mutations of the aromatic residues in the Ortiz site generally had little effect on PC activation, arguing against the importance of this region of the enzyme for PC activation; however, these aromatic amino acids appeared to be important for interfacial activation. In contrast, the D23N mutant in the Segelke site reduced PC activation by 10-fold without affecting activity toward micellar phosphatidylethanolamine substrates. Similar results were found with the D23N/R30M double mutant, suggesting that this region is critical for PC activation. These results provide evidence for the Segelke site as a PC activator site that is distinct from the catalytic site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.