Abstract

The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.