Abstract

BackgroundHigh concentrations of methylglyoxal (MGO) cause cytotoxiticy via formation of advanced glycation endproducts (AGEs) and inflammation. MGO is detoxificated enzymatically by glyoxalase-I (Glo-I). The aim of this study was to analyze the role of Glo-I during the development of cirrhosis.MethodsIn primary hepatocytes, hepatic stellate cells (pHSC) and sinusoidal endothelial cells (pLSEC) from rats with early (CCl4 8wk) and advanced cirrhosis (CCl4 12wk) expression and activity of Glo-I were determined and compared to control. LPS stimulation (24h; 100ng/ml) of HSC was conducted in absence or presence of the partial Glo-I inhibitor ethyl pyruvate (EP) and the specific Glo-I inhibitor BrBzGSHCp2. MGO, inflammatory and fibrotic markers were measured by ELISA and Western blot. Additional rats were treated with CCl4 ± EP 40mg/kg b.w. i.p. from wk 8–12 and analyzed with sirius red staining and Western blot.ResultsExpression of Glo-I was significantly reduced in cirrhosis in whole liver and primary liver cells accompanied by elevated levels of MGO. Activity of Glo-I was reduced in cirrhotic pHSC and pLSEC. LPS induced increases of TNF-α, Nrf2, collagen-I, α-SMA, NF-kB and pERK of HSC were blunted by EP and BrBzGSHCp2. Treatment with EP during development of cirrhosis significantly decreased the amount of fibrosis (12wk CCl4: 33.3±7.3%; EP wk 8–12: 20.7±6.2%; p<0.001) as well as levels of α-SMA, TGF-β and NF-κB in vivo.ConclusionsOur results show the importance of Glo-I as major detoxifying enzyme for MGO in cirrhosis. The reduced expression of Glo-I in cirrhosis demonstrates a possible explanation for increased inflammatory injury and suggests a “vicious circle” in liver disease. Blunting of the Glo-I activity decrease the amount of fibrosis in established cirrhosis and constitutes a novel target for antifibrotic therapy.

Highlights

  • Chronic liver inflammation secondary to different noxious agents can lead to the development of cirrhosis

  • Expression of Glo-I was significantly reduced in cirrhosis in whole liver and primary liver cells accompanied by elevated levels of MGO

  • Treatment with ethyl pyruvate (EP) during development of cirrhosis significantly decreased the amount of fibrosis (12wk CCl4: 33.3±7.3%; EP wk 8–12: 20.7±6.2%; p

Read more

Summary

Introduction

Chronic liver inflammation secondary to different noxious agents can lead to the development of cirrhosis. This inflammation activates hepatic stellate cells (HSC) directly by means of endotoxin (LPS) or indirectly through proinflammatory cytokines. Myofibroblasts lead to activation of factors for cell growth, cell proliferation and cell differentiation, mainly mitogen-activated protein kinases (MAPK), and activation of transcription factors such as nuclear factor-kB (NF-kB) [2,3]. AGEs bind to their receptor (RAGE) leading to the activation of different signaling pathways including the MAPkinase ERK 1/2, as well as the downstream activation of nuclear factor kB (NF-kB) [5,6], all of which have been involved in the activation of stellate cells.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call