Abstract

We have previously identified an association between symptomatic diabetic autonomic neuropathy (DAN) and autoantibodies to sympathetic and parasympathetic nervous structures. The antigens identified by these autoantibodies are not known, but glutamic acid decarboxylase (GAD) has been suggested as a candidate target, since anti-GAD autoantibodies are present in patients with long-term diabetes and GAD is expressed in a variety of cell types and structures in the nervous system. The aim of this study was to examine GAD expression in sympathetic ganglia and vagus nerve and to compare the distribution of GAD within these tissues with that of anti-sympathetic ganglia and anti-vagus nerve autoantibodies from patients with DAN, using single and double indirect immunofluorescence on tissue sections. The monoclonal antibody GAD-6, specific for GAD 65, gave a granular, peripheral, cytoplasmic staining pattern in sympathetic ganglion cells. Dual immunofluorescence demonstrated that serum from a patient with anti-sympathetic ganglion autoantibodies stained the same cells, but homogeneously throughout the cytoplasm. In the vagus nerve, patient's serum stained the fibres only; GAD-6 stained the cytoplasm of parasympathetic ganglion cells but only occasional fibres. In addition, GAD enzymatic activity was detectable in both sympathetic ganglia and vagus nerve. Incubation of sera or GAD-6 overnight with a crude homogenate of human brain as an antigen source abolished staining of the nervous tissues by GAD-6, but not by patients' sera. The different localisation of GAD and the autoantigens targeted by patients' sera indicates that GAD is not the target of the autoantibodies characteristic of DAN. Moreover, absorption studies using human brain homogenate suggest that the targets of anti-sympathetic ganglion and anti-vagus nerve autoantibodies are absent or represented only at low levels in the central nervous system and may be confined to the periphery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.