Abstract

GABA and its receptors show particular ontogenic distributions in different rat brain areas. Recently, GABA B receptors (GBR) have been described to assemble as heterodimers formed by a GBR1a/b and a GBR2 subunit. Here, the ontogeny of rat GBRs and the pattern of subunit expression in both sexes were determined in the hypothalamus, a critical area for homeostatic regulation. Male and female rats were sacrificed at 1, 4, 12, 20, 28, 38 days of life and at adulthood and hypothalami were removed and frozen. Western blots analysis for GBR1 and GBR2 subunits showed that both were expressed in male and female hypothalamic membranes from day 1 to adulthood. In females, both GBR1a and GBR1b were maximally expressed in newborns and decreased towards adulthood. At birth, expression of GBR1a was significantly higher than GBR1b, while at 38 days, GBR1b was more abundant. In males, GBR1a and GBR1b expression was higher in young animals and decreased gradually showing adult levels between the second and third weeks of age without differences between isoforms. Comparing GBR1 variants levels in hypothalamus between sexes, GBR1a was significantly more abundant in females at birth while at 38 days its expression was higher in males; GBR1b showed no sex differences along development. GBR2 was detected in hypothalami of females and males at all ages; maximum levels were observed at 12 days and adult levels were attained at 38 days, without sex differences. This is the first report on the ontogeny of hypothalamic GABA B receptors in male and female rats, with a particular developmental pattern of subunit and isoform expression and presenting some sex differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.