Abstract

Recombinant human erythropoietin (rhEPO), a glycohormone, is one of the leading biopharmaceutical products. The production of rhEPO is currently restricted to mammalian cell expression systems because of rhEPO's highly complex glycosylation pattern, which is a major determinant for drug-efficacy. Here we evaluate the ability of plants to produce different glycoforms of rhEPO. cDNA constructs were delivered to Nicotiana benthamiana (N. benthamiana) and transiently expressed by a viral based expression system. Expression levels up to 85 mg rhEPO/kg fresh leaf material were achieved. Moreover, co-expression of rhEPO with six mammalian genes required for in planta protein sialylation resulted in the synthesis of rhEPO decorated mainly with bisialylated N-glycans (NaNa), the most abundant glycoform of circulating hEPO in patients with anemia. A newly established peptide tag (ELDKWA) fused to hEPO was particularly well-suited for purification of the recombinant hormone based on immunoaffinity. Subsequent lectin chromatography allowed enrichment of exclusively sialylated rhEPO. All plant-derived glycoforms exhibited high biological activity as determined by a cell-based receptor-binding assay. The generation of rhEPO carrying largely homogeneous glycosylation profiles (GnGnXF, GnGn, and NaNa) will facilitate further investigation of functionalities with potential implications for medical applications.

Highlights

  • Erythropoietin (EPO) is a glycoprotein mainly produced in the adult kidney, and was initially highlighted for its action on the hematopoietic system [1, 2]

  • We demonstrate the efficient expression of sialylated rhEPOELD in N. benthamiana, already at 4 dpi

  • Terminal sialylation of rhEPOELD seemed to have a positive impact on the stability compared with WTrhEPOELD

Read more

Summary

Introduction

Erythropoietin (EPO) is a glycoprotein mainly produced in the adult kidney, and was initially highlighted for its action on the hematopoietic system [1, 2]. Native and rhEPOs, isolated from urine and Chinese hamster ovary (CHO) cells, respectively, carry large amounts of elongated and branched structures (i.e. sialylated bi-, tri-, and tetra-antennary oligosaccharides). Native hEPO isolated from serum, which presents the physiologically active form of the hormone, exhibits in general the same type of N-linked oligosaccharides in terms of branching patterns as CHO-derived rhEPO but the relative amounts of the individual structures are different. A major difference is the presence of relatively large amounts of non-sialylated GnGnF structures and the absence of tetra-antennary oligosaccharides in circulatory hEPO [13]. Large glycan variations can occur between different individuals’ urinary EPO [14]. These observations indicate that N-glycans actively contribute to the modulation of hEPO activities in vivo

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.