Abstract

CRIT (complement C2 receptor inhibitor trispanning) is a newly described transmembrane molecule that is capable of binding C2 via its first extracellular domain (ed1). CRIT competes with C4b for the binding of C2. Previous experiments have suggested that a major binding site for C2 is located on short, almost identical peptide sequences of CRIT-ed1 and the beta-chain of C4. The C2 domains involved in binding, however, remain unknown. We cloned the vWFA (von Willebrand factor-A) domain of C2, as it is a region likely to be involved in interactions with other proteins, and were able to functionally express the 25 kDa human complement C2 vWFA domain (amino acids 224-437). The recombinant vWFA protein fixed on MagneHis Ni-Particles bound C4 in normal human serum. The C4 alpha, beta and gamma chains were separated by SDS/PAGE and purified separately by electro-elution. The purified C4 chains were then used in a sandwich ELISA, which showed the vWFA to bind C4 only via the C4beta chain. In a haemolytic assay, the recombinant vWFA protein inhibited complement activation by the classical pathway in a dose-dependent manner by competing with native C2 for binding to C4b. vWFA bound the ed1 peptide of CRIT as well, and specifically to the 11-amino-acid peptide fragment of ed1 that is known to interact with whole C2. These findings show that the vWFA domain is centrally involved in the C2-CRIT and C2-C4b bindings. The cloned vWFA domain will allow us to dissect out the fine interactions between C2 and CRIT or C4b.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call