Abstract

Genetically engineering bacteria to express surface proteins which can antagonize the colonization of other microorganisms is a promising strategy for altering bacterial environments. The fimbriae of Porphyromonas gingivalis play an important role in the pathogenesis of periodontal diseases. A structural subunit of the P. gingivalis fimbriae, fimbrillin, has been shown to be an important virulence factor, which likely promotes adherence of the bacterium to saliva-coated oral surfaces and induces host responses. Immunization of gnotobiotic rats with synthetic peptides based on the predicted amino acid sequence of fimbrillin has also been shown to elicit a specific immune response and protection against P. gingivalis-associated periodontal destruction. In this study we engineered the human oral commensal organism Streptococcus gordonii to surface express subdomains of the fimbrillin polypeptide fused to the anchor region of streptococcal M6 protein. The resulting recombinant S. gordonii strains expressing P. gingivalis fimbrillin bound saliva-coated hydroxyapatite in a concentration-dependent manner and inhibited binding of P. gingivalis to saliva-coated hydroxyapatite. Moreover, the recombinant S. gordonii strains were capable of eliciting a P. gingivalis fimbrillin-specific immune response in rabbits. These results show that functional and immunologically reactive P. gingivalis fimbrillin polypeptides can be expressed on the surface of S. gordonii. The recombinant fimbrillin-expressing S. gordonii strains may provide an effective vaccine or a vehicle for replacement therapy against P. gingivalis. These experiments demonstrated the feasibility of expressing biologically active agents (antigens or adhesin molecules) by genetically engineered streptococci. Such genetically engineered organisms can be utilized to modulate the microenvironment of the oral cavity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.