Abstract

Telomerase, a ribonucleoprotein, is highly expressed and active in many tumor cells and types, therefore it is considered to be a target for anti-cancer agents. On the other hand, recent studies demonstrated that activation of telomerase is a potential therapeutic target for age related diseases. Telomerase mainly consists of a catalytic protein subunit with a reverse transcription activity (TERT) and an RNA component (TERC), a long non-coding RNA, which serves as a template for the re-elongation of telomeres by TERT. We previously showed that TERT is highly expressed in distinct neuronal cells of the mouse brain and its expression declined with age. To understand the role of telomerase in non-mitotic, fully differentiated cells such neurons we here examined the expression of the other component, TERC, in mouse brain. Surprisingly, by first using bioinformatics analysis, we identified an alternative TERC gene (alTERC) in the mouse genome. Using further experimental approaches we described the presence of a functional alTERC in the mouse brain and spleen, in cultures of motor neurons- like cells and neuroblastoma tumor cells. The alTERC is similar (87%) to mouse TERC (mTERC) with a deletion of 18 bp in the TERC conserved region 4 (CR4). This alTERC gene is expressed and its product interacts with the endogenous mTERT protein and with an exogenous human TERT protein (hTERT) to form an active enzyme. Overexpression of the alTERC and the mTERC genes, in mouse motor neurons like cells, increased the activity of TERT without affecting its protein level. Under oxidative stress conditions, alTERC significantly increased the survival of motor neurons cells without altering the level of TERT protein or its activity.The results suggest that the expression of the alTERC gene in the mouse brain provides an additional way for regulating telomerase activity under normal and stress conditions and confers protection to neuronal cells from oxidative stress.

Highlights

  • Telomerase, a ribonucleoprotein, mainly consists of two catalytic essential elements: a Telomerase reverse transcriptase (TERT) and a Telomerase RNA Component (TERC)

  • To further examine whether the alternative TERC gene (alTERC) is a paralog of mouse TERC (mTERC), we compared the alTERC to the Multiple Sequence Alignment (MSA) of TERC from 33 different mammals

  • The results suggest that mouse TERC and alTERC can interact with the human TERT protein (hTERT) expressed in the NSC-34 cells

Read more

Summary

Introduction

Telomerase, a ribonucleoprotein, mainly consists of two catalytic essential elements: a Telomerase reverse transcriptase (TERT) and a Telomerase RNA Component (TERC). TERT re-elongates telomeres by the incorporation of repeated sequences of six nucleotides at the 3` end of the chromosome using TERC as its template. This activity is essential for the stability of the genome and for the cell lifespan. In addition to its function as the template for TERT, different parts of the TERC molecule together with TERT shape the telomerase catalytic centre, participate in the nucleotide incorporation catalytic activity, are important for the TERT/RNA/Proteins complex assembly, required for the efficient translocation process [14], and play a key role in transport and regulation of telomerase activity (review in [15]). It was shown that TERC can function as noncoding RNA that protects from apoptosis in CD4 T-cells independently of its function in telomerase activity and telomere maintenance [21].Interestingly, in Arabidopsis two divergent TERC moieties (TER1, TER2)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call