Abstract
Generalized tonic–clonic seizures of brain stem origin in rats are associated with acute induction of neuronal Fos in several discrete regions of the brain. One particular site in the dorsal pons shows remarkable Fos induction following generalized tonic seizures induced by maximal electroshock in normal rats or by audiogenic stimulation in genetically epilepsy-prone rats (GEPRs). Although this area shows the most intense Fos induction of any brain area following generalized tonic seizures, its identity has been uncertain. Based on its general location, we hypothesized that this nucleus was either 1) a component of the pedunculopontine tegmentum nucleus-pars compacta (PPTn-pc) or 2) the superior lateral subnucleus of lateral parabrachial area (LPBsl). The present study used Fos-protein immunocytochemistry in combination with the reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, cholecystokinin (CCK) immunocytochemistry, and neuronal tract-tracing to determine the identity of this cluster of Fos-immunoreactive neurons in the dorsal pons. Following maximal electroshock seizure (MES), Fos labeling was compared to NADPH diaphorase staining (a marker for cholinergic neurons of the PPTn-pc); retrograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected into the ventromedial nucleus of the hypothalamus (VMH; to identify the LPBsl) or CCK immunoreactivity (also a marker for LPBsl neurons). Results showed this cluster of Fos immunoreactive (FI) neurons to be closely associated, but not overlapping, with the lateral and most caudal aspect of the PPTn-pc. Alternatively, WGA-HRP retrograde-labeled neurons corresponded precisely with the seizure-induced FI neurons. Additionally, the location of CCK immunoreactive neurons directly overlapped with the FI neurons, although they were not nearly as prevalent. These results demonstrate that the seizure-induced FI neurons in this area are neurons of the LPBsl and not cholinergic neurons of the PPTn-pc. This is the first report of seizure-induced Fos expression specifically localized to the superior lateral subnucleus of the lateral parabrachial area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.